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Abstract-A general solution is obtained for the steady-state heat diffusion equation by the application of the 
finite integral transform technique. The present solution contains one less infinite series than that obtainable 
by the integral transform technique in which all partial derivatives with respect to the space variables are 
removed from the differential equation by integral transformation. Several special cases are readily 
obtainable from the present solution. The application of the general result to the solution ofspecific problems 

is illustrated with examples. 
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NOMENCLATURE 

boundary condition operator defined 

by equation (If); 

normal derivative in the outward direc- 

tion at the boundary surface; 

source function at t = t,, defined by 

equation (lc, d); 

differential operator in the space vari- 

ables x, defined by equation (le) ; 
a second order linear differential oper- 

ator in the variable r; 

boundary surface of the region V; 

temperature; 

the space variable that is not to be 

transformed; 

the space variables that are to be 

transformed; 

a prescribed function in equation (la); 

boundary condition coefficients in 
equation (If); 
coefficients in equations (lc, d); 
eigenvalue ; 
z tji(x) eigenfunction. 

INTRODUCTION 

THE INTEGRAL transform technique has been used for 
the solution of time dependent and steady-state heat 
diffusion equation in several referencesrl-31. In the 
case of steady-state problems, if all the partial de- 
rivatives with respect to the space variables are 
removed from the system by the application of finite 
integral transform technique and the transform of the 
function obtained in this manner is inverted, the 
resulting solution contains triple summation for a 
three dimensional problem and double summation for 
a two dimensional problem. In an alternative ap- 

proach, the system can be reduced to an ordinary 
differential equation in one of the space variables by 
removing from the system all the space variables 
except one by integral transformation, the resulting 
ordinary differential equation is solved and the trans- 
form is inverted. The solution obtained with the 
second method contains one less summation than that 
obtained by the first approach. In the following 
analysis, we present a general solution of the steady- 
state heat diffusion equation for finite regions by the 
latter approach. 

ANALYSIS 

Let t be the space variable that will not be transfor- 
med in the integral transformation process and L, an 
arbitrary, second order linear differential operator 
associated with the space variable t. Let x denote the 
remaining space variables that will be transformed by 
the application of the integral transform and L the 
differential operator associated with the space vari- 
ables x. Then, with this formalism, we write steady- 
state heat conduction problem for a finite region V 
as 

{w(x)L,+L}T(x,t) = 0, XEV, t, I I s t, (la) 

BT(x,t) = 0, XES (lb) 

{ 
8k - (- I)‘$ 

1 
T(x, tk) = h(X), k = o,t 

(kd) 
where 

L = - V . [k(x)V] + d(x) (le) 

B = a(x) + /?(x)k(x)G (10 

and L, is an arbitrary second order differential oper- 
ator in the space variable t. We assume further that 
a(x) does not vanish simultaneously at all points XES. 
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Appropriate eigenvalue problem for the solution of 
this system is taken as 

L$(x) = ,U%(x)@(x), x E I/ (2a) 

B&x) = 0. ?iGS (2b) 

and the eigenfunctinns $(P~>x) 5 i,(x) and the eigen- 
values pi of this eigenvalue problem are considered to 
be known. 

When equations (ba, b) are solved for C‘ and I), the 
results are introduced into equation (5) and the 
resulting integral transform T,(t) is inverted by the 
inversion formula (3b), the solution for 7‘,(r) is inverted 
by the inversion formula (3b), the solution for 7’(x, 1) IX 
obtained as 

To solve the problem (1) by the integral transform For the special case of 
technique, the finite integral transform pair is defined 
as [ZJ: the integral transform 

6a --I 0, j;(x) = 0, t,, = O [%I 

and if the condition 
?=&) = w(x)$i(xF(x, t)dr = ($1, T) (Ja) 

and the inversion formula @bi 

(3b) 

where Ni is the normalization integral given by 
is satisfied, the solution (S) reduces to 

* $Axf 

N, = w(x)C$i(xl12dx z i$i> @iI. (3c) 
T(x,t) = 2: ~- 

i = 1 (fl/i, Gi) 

We take the integral transform of system (1) by the 
application of transform (3a). That is, equation (la) is 
multiplied by rji(x), equation (2a) by T(x, t), the results 
are subtracted, integrated over the region V, the 
definition of the integral transform (3a) is utilized, the 
volume integral is transformed to the surface integral 
by Green’s theorem, and the boundary conditions (lb) 
and (2b) applied. We obtain the following second 
order ordinary differential equation for the transform 
Ti’,(t) : 

Clearly, several special cases are readily obtainable 
from the general soiutions (8) and (10). 

APPLICATION 

We now illustrate, with the following examples. the 
use of the general results given by equations (8) and 
(lo), to obtain solutions for specific heat diffusion 
problems. 

s*-(-l)kyk~ ~i(f)=(~i*~), k=O,l. I 
E~u#t~l~ 1 

Consider a finite rectangular region 0 (; s “;. u, 0 2; 
(4b,c) )’ I b with boundary at J = 0 kept at a prescribed 

Let Z&Q, t) and t&, 1) be two linearly independent 
temperatures while the other boundaries are kept at 

solutions of the differential equation (4a). The general 
zero temperature. The steady-state temperature 

solution for Ti(t) is constructed by taking a linear 
T(x, y) satisfies the following system 

combination of these two solutions as 

Ti(f) = CU(&, t) + Dv(pi, t). 

(5) {;;+;~}w=o 

If the solution (5) should satisfy the two boundary 
in O$xli~, Orylb ilta) 

conditions (4b,c), we have T(ka, .Y) = 0, k =0,1 (I1b.c) 

Cu(/+, tkf + Df’/fn, rk) = ($i,fk)r k = 0, f T(X, kb) = (1 - k)f(x), Ir=O,l. (l1d.e) 
(6a, b) 

where 
By comparing this problem with the general problem 
given by equation (1) we write 
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6, = l, &. = O, fOtx) =ftx), fltx) = ‘2 

B = 1 at x = ka (k = 0,l). (12) 

With various quantities as defined by equation (12), 
the eigenvahte probIem (2) is significantly simplified 
and the resulting ~genfunctions, eigenvalues and the 
normalization integral are given respectively by 

tiitx) = sin pix, pi = Yr i(i = 1,2,3,. . .), 
a 

N ZZ ($i> $*I = tj (I31 

and the elementary solutions of equation (4a) are 
taken as 

U(Pi, Y) = cosh(piY), u(ptv Y) = sinh@iy). (14) 

Introducing equations (12), (13) and (14) into equation 
(8), the solution for the problem (11) becomes 

T(x, Y I= f sin WI 
sinh[db - v)l 

sinh (Fib) 

s (i 

sin(,uix)f(x)dx (15) 
0 

where 

pi=ni. 
a 

Example 2 

Along solid cylinder 0 I r < b, 0 2 #I I 2~ is 

subjected to convective heat transfer at the boundary 
surface r = b with an environment whose temperature 
varies around the circumference. The steady-state 
temperature distribution T(r, 4) in the cylinder satis- 
fies the following system: 

T(r,4) =f(d) at r = b. (16b) 

A comparison of problem (16) with the general 
problem (1) reveals that 

o? a 
t=r,w(x)= 1, L,= -rat- riir 

C ! 
, 

; 

(17) 

L= _az 
a42 ’ 

61 = h, ~1 = k h(x) =f@). 

With various quantities as defined by equation (17), 
the eigenvalues of the eigenvalue problem (2) that give 
a periodic solution with a period 2n are p”i = i (i = 41, 
2,. . .). The corresponding two independent eigenfunc- 
tions are taken as cos(i#) and sin(i#); and the 
elementary solutions of equation (4a) become 

u(cl,, r) = r*, v(pe r) = rei. (18) 

Introducing these results into equation (lo), the so- 
lution for the problem (16)can be expressed in the form 

P i 

0 6 
T(r,$) = i f - 

ni=oh+ti 

s 

2x 

~0s CW’ - #Hf(#‘W’ W 
0 

where n should be replaced by 2% for i = 0. This result 
is the same as that given in [3f, p. 183. 
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UNE NOUVELLE RESOLUTION GENERALE DE L’EQUATION 
DE LA DIFFUSION PERMANENTE DE LA CHALEUR 

Rhmi - On obtient une solution g&i&ale pour l’equation de Ia diffusion permanente de chaleur par 
appIication dune t~hnique de tra~formation integrale. La solution contient une shie infinie plus 
convergente que celle obtenue par la technique dans laquelle toutes les d&iv&es partielles par rapport aux 
variables d’espace sont, darts I’equation, trait&s par la transformation integrale. Divers cas speciaux sont 
obtenus aisement H partir de la prtsente solution. L’apphcation B des probl&mes sp&%ques est illustrb a 

travers des exemples. 

EINE ALTERNATIVE, ALLGEMEINE L&SUNG DER STATIONAREN 
WARMELEITUNGSGLEICHUNG 

~rn~f~-Die statiomire W~~eleit~gsgleichung wurde durch Anw~dung der Methode der 
finiten Integral~~sformation in allgemeiner Form gel&t. Die vodiegende Liisung enthiilt eine unendliche 
Reihe weniger als diejenige Losung, die man mittels der Methode der Integraltransformation erhalt, bei der 
alie partiellen Ableitungen nach den Raumkoordinaten mittels Integraltransformation aus der Differential- 
gleichung entfernt werden. Verschiedene Spezialllle kiinnen aus der vgrhegenden Lijsung leicht hergeleitet 
werden. Die Anwendung der allgemeinen Losung zur L&sung von speziellen Problemen ist anhand von 

Beispielen erliiutert. 
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K OLUEMY PELUEHMIO YPABHEHW5-l CTA~MOHAPHOfi AM@@YXlM TEFl.flA 

AHHOT~UHR flo_vyretio 06mee pewewe ypaeHeHm C~dwoHapHofi mi44y3~~ Tenila uyre~ kfcno~tb- 

308a~m t4eTona KoHeqtibm wTerpa.ubHbm npeo6pasosaHGi. Pemetikie c0;tepme-r ~a O;IUH pn,k vetibwe 

6eCKOHeYHbIX pnJOB, Vet4 B cJly',ae Hc"O"b30BaHHR MeTOfia HHTerpaZbHOrO npeO6pa30BaHW. KOl‘Ja 

WI :IM@,IepeHil~a;lbHO~O ypaBHeHkM ACKJK)',a~TCR Bee qaCTHb,e npOA3BOnHbIe "0 npOCTpaHCTBeHHblM 

nepek.feHHbm. M3 npemaraektoro pemewin ~o20~0 JlerKo no:*ywTb HecKonbKo wcmblx orysaen. Ha 
pnae npmeporr Hn.rlmcTpepyeTcw npMMeHeHae Iipe!uIaraeuoro cnoco6a K peuIeHm0 wcmbix 3axiY. 


