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Abstract — A general solution is obtained for the steady-state heat diffusion equation by the application of the

finite integral transform technique. The present solution contains one less infinite series than that obtainable

by the integral transform technique in which all partial derivatives with respect to the space variables are

removed from the differential equation by integral transformation. Several special cases are readily

obtainable from the present solution. The application of the general result to the solution of specific problems
is illustrated with examples.

NOMENCLATURE

B, boundary condition operator defined
by equation (If);

i, normal derivative in the outward direc-

on tion at the boundary surface;

filx), source function at ¢t = t,, defined by
equation (lc, d);

L, differential operator in the space vari-
ables x, defined by equation (le);

L, a second order linear differential oper-
ator in the variable ¢;

S, boundary surface of the region V;

T(x,1), temperature ;

t, the space variable that is not to be
transformed ;

X, the space variables that are to be
transformed ;

w(x), a prescribed function in equation (1a);

a(x), f(x), boundary condition coefficients in
equation (1f);

Ok Vi coefficients in equations (lc,d);

Hi eigenvalue;
Y(u,X), = y(x) eigenfunction.

INTRODUCTION

THE INTEGRAL transform technique has been used for
the solution of time dependent and steady-state heat
diffusion equation in several references[1-3]. In the
case of steady-state problems, if all the partial de-
rivatives with respect to the space variables are
removed from the system by the application of finite
integral transform technique and the transform of the
function obtained in this manner is inverted, the
resulting solution contains triple summation for a
three dimensional problem and double summation for
a two dimensional problem. In an alternative ap-
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proach, the system can be reduced to an ordinary
differential equation in one of the space variables by
removing from the system all the space variables
except one by integral transformation, the resulting
ordinary differential equation is solved and the trans-
form is inverted. The solution obtained with the
second method contains one less summation than that
obtained by the first approach. In the following
analysis, we present a general solution of the steady-
state heat diffusion equation for finite regions by the
latter approach.

ANALYSIS

Let t be the space variable that will not be transfor-
med in the integral transformation process and L, an
arbitrary, second order linear differential operator
associated with the space variable . Let x denote the
remaining space variables that will be transformed by
the application of the integral transform and L the
differential operator associated with the space vari-
ables x. Then, with this formalism, we write steady-
state heat conduction problem for a finite region V
as

{w(xX)L,+L}T(x,t) =0, xeV, to <t <t, (la)
BT(x,t)=0, xe8§ (1b)
0
{5k — (=DM a} T(x,t) = filx), k=0,1,
(1c,d)
where
= — V- [k(x)V] + d(x) (1e)
5,
B = o(x) + ﬂ(X)k(X)a— (19
n

and L, is an arbitrary second order differential oper-
ator in the space variable t. We assume further that
a(x) does not vanish simultaneously at all points xeS.
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Appropriate eigenvalue problem for the solution of
this system is taken as

Ly(x) = @Pwix)y(x), xeV (2a)

Byix)=0, xe§ (2b)

and the eigenf(mctions Wik, X) = y(x) and the eigen-
values ; of this eigenvalue problem are considered to
be known.

1

T
oy W)

Y (-
T(x, 1) = DL RER L

To solve the problem (1) by the integral transform
technique, the finite integral transform pair is defined
as [2]: the integral transform

T = [ wxW ()T (x, ) de = (¥, T)  (3a)
Jv
and the inversion formula

2

T =Y —pTi0)

&N, (3b)

where N, is the normalization integral given by

N;= J w(x)[t,//‘-(x)]zdx = (s ¥ (3¢)

We take the integral transform of system {1) by the
application of transform (3a). That is, equation (1a) is
multiplied by ¥,(x), equation (2a) by T(x, 1), the results
are subtracted, integrated over the region ¥V, the
definition of the integral transform (3a) is utilized, the
volume integral is transformed to the surface integral
by Green’s theorem, and the boundary conditions (1b})
and (2b) applied. We obtain the following second
order ordinary differential equation for the transform

T(t):

(Li+ T =0 into<t<t;  (4a)

d . .
{5%: - {- ”kha} T =0, k=01
» {4b,c}

Let u{y;, 1) and v{u;, 1) be two linearly independent
solutions of the differential equation (4a). The general
solution for T(t) is constructed by taking a linear
combination of these two solutions as

Tty = Culu,, ) + Do{g,, ). (3)

If the solution (5) should satisfy the two boundary
conditions {4b, ¢}, we have

CU(u, t) + DV t) = (Y fi), k=01

(6a,b)

where

d
Ul 1) = {5k ~{~ 1)k)’ka} (i 1) {Ta)
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Vi ty) = %61‘ — (= DMy ’%“U‘ie T)- {70}
When equations (6a, b) are solved for € and D. the
results are introduced into equation (5} and the
resulting integral transform T(t) is inverted by the
inversion formula (3b), the solution for T',(¢) is inverted
by the inversion formula (3b), the solution for T(x, 1) is
obtained as

DU RSy - DV (s tdulin 0 — U ) elpg 1)

Y (= DU () Vit )
k=0
For the special case of
do =10, folx}=0, =0 {9a}
and if the condition
d {tis o)
g t
. de
Lim | e b = ) {9b)
o0 M‘U(ﬂ-t )
d 0
is satisfied, the solution (8) reduces to
o Wilx)
Tix,t)= -
t';l (wiﬂ 'ﬁ;)
0wl
X (Y fi)—— u(p,} N ]
- du(:uis I)
Oyulpti 1) + ¥y O

Clearly, several special cases are readily obtainable
from the general solutions (8) and (10},

APPLICATION

We now illustrate, with the following examples, the
use of the general results given by equations (8) and
(10), to obtain solutions for specific heat diffusion
problems.

Example 1

Consider a finite rectangular region 0 < x < ¢, 0 <
¥ < b with boundary at y = 0 kept at a prescribed
temperature f(x) while the other boundaries are kept at
zero temperature. The steady-state temperature
T(x, y} satisfies the following system

6’2 62
i + 5 Top) =0

oy

in 0<x<ag 0<Ly<bh {lla}
Tika,y) =0, k=0,1 {lib.¢}
T(x,kb) = (1 —K)f(x), k=01 (lld.e)

By comparing this problem with the general problem
given by equation (1) we write

&
t=v, wix)=1%1 Li=——-3,

R
g

¥
8

L=~

 Fat

ey



A solution of the steady-state heat diffusion equation

611'_"15 ’)’k:Os fo(x)=f(x), f‘(x)=0,

B=1 atx=ka (k=0,1). (12)

With various quantities as defined by equation (12),
the eigenvalue problem (2) is significantly simplified
and the resulting eigenfunctions, eigenvalues and the
normalization integral are given respectively by

%m=ﬁmw,m=gw=hllmx

Nsmmwgan

and the elementary solutions of equation (4a) are
taken as

u(p, y) = cosh{wy), v(w,y) = sinh(py). (14)

Introducing equations (12), (13) and (14) into equation
(8), the solution for the problem (11) becomes
22 sinh (146 ~ )]

T = 2 S

0

meWWM<m
where '
.,
Hp=—1L
a

Example 2

Along solid cylinder 0 < r < b,0 < ¢ < 2rnis
subjected to convective heat transfer at the boundary
surface r = b with an environment whose temperature
varies around the circumference. The steady-state
temperature distribution T(r, ¢) in the cylinder satis-
fies the following system:

¢/ ¢ 2
{ré—r—(?é‘;) + W} T(?', ¢) =0

in0<r<b 0<¢<2n (163)
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{k;% + h} T(r,¢)=f(¢) atr=b. (16b)

A comparison of problem (16} with the general
problem (1) reveals that

87 @8
L! = -r-é—;(ra—r),

dy=h vy =k f[i(x)=f(P)

t=r,wx}=1,
an
62
a*’
With various quantities as defined by equation (17),
the eigenvalues of the eigenvalue problem (2) that give
a periodic solution with a period 2rmarey; = i{(i =0, 1,
2,...). The corresponding two independent eigenfunc-
tions are taken as cos(i¢) and sin(i¢); and the
elementary solutions of equation (4a) become
u(ub r) = ri5 v(ub ") = r_i' (18)

Introducing these results into equation (10}, the so-
tution for the problem (16) can be expressed in the form

)
Tm®=%2 b

k
! 0h+gi

L=—

2n
j cos[i(¢' — ¢)1f(¢)dd" (19)
o

where 7 should be replaced by 27 for i = 0. This result
is the same as that given in [3], p. 183.
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UNE NOUVELLE RESOLUTION GENERALE DE L'EQUATION
DE LA DIFFUSION PERMANENTE DE LA CHALEUR

Résumeé — On obtient une solution générale pour P'équation de la diffusion permanente de chaleur par

application d'une technique de transformation intégrale. La solution contient une série infinie plus

convergente que celle obtenue par la technique dans laquelle toutes les dérivées partielles par rapport aux

variables d’espace sont, dans 'équation, traitées par la transformation intégrale. Divers cas spéciaux sont

obtenus aisément 4 partir de la présente solution. L’application 4 des problémes spécifiques est illustrée a
travers des exemples.

EINE ALTERNATIVE, ALLGEMEINE LOSUNG DER STATIONAREN
WARMELEITUNGSGLEICHUNG

Zasammenfassung—Die stationire Wirmeleitungsgleichung wurde durch Anwendung der Methode der

finiten Integraltransformation in allgemeiner Form gelost. Die vorliegende Losung enthilt eine unendliche

Reihe weniger als diejenige Losung, die man mittels der Methode der Integraltransformation erhilt, bei der

alle partiellen Ableitungen nach den Raumkoordinaten mittels Integraitransformation aus der Differential-

gleichung entfernt werden. Verschiedene Spezialfille kénnen aus der vorliegenden Losung leicht hergeleitet

werden. Die Anwendung der allgemeinen Losung zur Lésung von speziellen Problemen ist anhand von
Beispielen erldutert.
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K OBLUEMY PEHMIEHHUIO YPABHEHUSI CTALIMOHAPHOW AUGDV3IUU TEMIA

AnvoTauns - [lonyueno obiuee pelieHUe YypaBHEHMsi CTAUHMOHAPHOH ANdy3HH Tenla nyrem HCHOJIb-
30BAHMS METO/1a KOHEYHBIX HHTEIPAJIbHBIX [peobpasosauil. Pelerne coO/IEPAHT HA OJHH PA;1 MEHBILE
0eCKOHEHHbIX PAI0B, YeM B Cily4ae MCHOJIb30BAHHS METOJa MHTErPaILHOrO fpeodpa3oBaHus, KOria
13 ubdepeHInaIbHOTO YPABHEHHS HCKITIOHAKOTCH BCE YACTHBIE MPOH3BOHBIE MO NTPOCTPAHCTBEHHBIM
nepeMenHbIM. M3 npe/siaraeMoro peleHnss MOXHO JIETKO HOJ1yYHTb HECKOJIbKO YACTHBIX ciyyaes. Ha
psfle TPHMEPOB WITHCTPHPYETCS TPUMEHEHHE NPE/UIaracMoro crnocoba K pelieHUIo HacTHBIX 3aiad.



